Inductive Reasoning and Conjecture

Making Conjectures Inductive reasoning is reasoning that uses information from different examples to form a conclusion or statement called a conjecture.

Example 1 Write a conjecture about the next number in the sequence 1, 3, 9, 27, 81.

Look for a pattern:
Each number is a power of 3.

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>9</th>
<th>27</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>3^0</td>
<td>3^1</td>
<td>3^2</td>
<td>3^3</td>
<td>3^4</td>
</tr>
</tbody>
</table>

Conjecture: The next number will be 3^5 or 243.

Example 2 Write a conjecture about the number of small squares in the next figure.

Look for a pattern: The sides of the squares have measures 1, 2, and 3 units.

Conjecture: For the next figure, the side of the square will be 4 units, so the figure will have 16 small squares.

Exercises

Write a conjecture that describes the pattern in each sequence. Then use your conjecture to find the next item in the sequence.

1. $-5, 10, -20, 40$ Pattern: Each number is -2 times the previous number. Conjecture: The next number is -80.

2. $1, 10, 100, 1000$ Pattern: Each number is 10 times the previous number. Conjecture: The next number is 10,000.

3. $1, \frac{6}{5}, \frac{7}{5}, \frac{8}{5}$ Pattern: Each number is $\frac{1}{5}$ more than the previous number. Conjecture: The next number is $\frac{9}{5}$.

Write a conjecture about each value or geometric relationship. 4–7. Sample answers are given.

4. $A(-1, -1), B(2, 2), C(4, 4)$

Points A, B, and C are collinear.

5. $\angle 1$ and $\angle 2$ form a right angle. $\angle 1$ and $\angle 2$ are complementary.

6. $\triangle ABC$ and $\triangle DBE$ are vertical angles. $\angle ABC$ and $\angle DBE$ are congruent.

7. $\triangle E$ and $\triangle F$ are right angles. $\angle E$ and $\angle F$ are congruent.
Find Counterexamples A conjecture is false if there is even one situation in which the conjecture is not true. The false example is called a counterexample.

Example Find a counterexample to show the conjecture is false.

If $\overline{AB} \cong \overline{BC}$, then B is the midpoint of \overline{AC}.

Is it possible to draw a diagram with $\overline{AB} \cong \overline{BC}$ such that B is not the midpoint? This diagram is a counterexample because point B is not on \overline{AC}. The conjecture is false.

Exercises

Determine whether each conjecture is true or false. Give a counterexample for any false conjecture.

1. If points A, B, and C are collinear, then $AB + BC = AC$.
 False; C could be between A and B.

2. If $\angle R$ and $\angle S$ are supplementary, and $\angle R$ and $\angle T$ are supplementary, then $\angle T$ and $\angle S$ are congruent.
 True

3. If $\angle ABC$ and $\angle DEF$ are supplementary, then $\angle ABC$ and $\angle DEF$ form a linear pair.
 False; the angles could be nonadjacent.

4. If $\overrightarrow{DE} \perp \overrightarrow{EF}$, then $\angle DEF$ is a right angle.
 True